dan

Dan Kan: Simplicial HoTT

Groupoid Infinity Simplicial HoTT Computer Algebra System is a pure algebraїc implementation with explicit syntaxt for fastest type checking. It supports following extensions: Chain, Cochain, Simplex, Simplicial, Category, Monoid, Group, Ring. Simplicial HoTT is a Rezk/GAP replacement incorporated into CCHM/CHM/HTS Agda-like Anders/Dan with Kan, Rezk and Segal simplicial modes for computable āˆž-categories.

Abstract

We present a domain-specific language (DSL), the extension to Cubical Homotopy Type Theory (CCHM) for simplicial structures, designed as a fast type checker with a focus on algebraic purity. Built on the Cohen-Coquand-Huber-Mƶrtberg (CCHM) framework, our DSL employs a Lean/Anders-like sequent syntax П (context) ⊢ k (vā‚€, ..., vā‚– | fā‚€, ..., fā‚— | ... ) to define k-dimensional 0, ..., n, āˆž simplices via explicit contexts, vertex lists, and face relations, eschewing geometric coherence terms in favor of compositional constraints (e.g., f = g ∘ h). The semantics, formalized as inference rules in a Martin-Lƶf Type Theory MLTT-like setting, include Formation, Introduction, Elimination, Composition, Computational, and Uniqueness rules, ensuring a lightweight, deterministic computational model with linear-time type checking (O(k + m + n), where k is vertices, m is faces, and n is relations). Inspired by opetopic purity, our system avoids cubical path-filling (e.g., PathP), aligning with syntactic approaches to higher structures while retaining CCHM’s type-theoretic foundation. Compared to opetopic sequent calculi and the Rzk prover, our DSL balances algebraic simplicity with practical efficiency, targeting simplicial constructions over general āˆž-categories, and achieves a fast, pure checker suitable for formal proofs and combinatorial reasoning.

Setup

$ ocamlopt -o dan src/simplicity.ml && ./dan

Syntax

Incorporating into CCHM/CHM/HTS Anders/Dan core.

Definition

New sequent contruction:

def <name> : <type> := П (context), conditions ⊢ <n> (elements | constraints)

Instances:

def chain : Chain := П (context), conditions ⊢ n (Cā‚€, C₁, ..., Cā‚™ | āˆ‚ā‚€, āˆ‚ā‚, ..., āˆ‚ā‚™ā‚‹ā‚)
def simplicial : Simplicial := П (context), conditions ⊢ n (sā‚€, s₁, ..., sā‚™ | facemaps, degeneracies)
def group : Group := П (context), conditions ⊢ n (generators | relations)
def cat : Category := П (context), conditions ⊢ n (objects | morphisms | coherence)

BNF

<program> ::= <definition> | <definition> <program>
<definition> ::= "def" <id> ":" <type-name> ":=" <type-term>
<type-name> ::= "Simplex" | "Simplicial" | "Chain" | "Cochain"
                          | "Category"  | "Group" | "Monoid" | "Ring" | "Field"
<type-term> ::= "П" "(" <context> ")" "⊢" <n> "(" <elements> "|" <constraints> ")"
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<superscript> ::= "¹" | "²" | "³" | "⁓" | "⁵" | "⁶" | "⁷" | "⁸" | "⁹"
<n> ::= <digit> | <digit> <n> | "āˆž"
<context> ::= <hypothesis> | <hypothesis> "," <context>
<hypothesis> ::= <id> ":" <type-term>               % Single declaration, e.g., a : Simplex
               | "(" <id-list> ":" <type-term> ")"  % Grouped declaration, e.g., (a b c : Simplex)
               | <id> "=" <t> "<" <t>               % Map, e.g., āˆ‚ā‚ = Cā‚‚ < Cā‚ƒ
               | <id> "=" <t>                        % Equality, e.g., x = 2
               | <id> "=" <t> "∘" <t>               % Monoid composition, e.g., ac = ab ∘ bc
               | <id> "=" <t> "+" <t>               % Ring addition, e.g., x + y = s
               | <id> "=" <t> "ā‹…" <t>               % Ring multiplication, e.g., x ā‹… y = p
               | <id> "=" <t> "/" <t>               % Field division, e.g., x / y = d
<id-list> ::= <id> | <id> <id-list>                 % e.g., a b c
<elements> ::= <element-list> | ε
<element-list> ::= <id> | <id> "," <element-list>
<constraints> ::= <constraint-list> | ε
<constraint-list> ::= <constraint> | <constraint> "," <constraint-list>
<constraint> ::= <t> "=" <t>                        % Equality, e.g., a = 2
               | <t> "∘" <t> "=" <t>                % Monoid composition, e.g., a ∘ a = e
               | <t> "+" <t> "=" <t>                % Ring addition, e.g., x + y = s
               | <t> "ā‹…" <t> "=" <t>                % Ring multiplication, e.g., x ā‹… y = p
               | <t> "/" <t> "=" <t>                % Field division, e.g., x / y = d
               | <id> "<" <id>                      % Map, e.g., āˆ‚ā‚ < Cā‚‚
<t> ::= <id>                                        % e.g., a
      | <t> "∘" <t>                                 % e.g., a ∘ b
      | <t> "+" <t>                                 % e.g., x + y
      | <t> "ā‹…" <t>                                 % e.g., x ā‹… y
      | <t> "/" <t>                                 % e.g., x / y
      | <t> "^-1"                                   % e.g., a^-1
      | <t> "^" <superscript>                       % e.g., a³
      | "e"                                         % identity
      | <number>                                    % e.g., 2
      | <matrix>                                    % e.g., [[1,2],[3,4]]
<number> ::= <digit> | <digit> <number>             % e.g., 123
<matrix> ::= "[" <row-list> "]"                     % e.g., [[1,2],[3,4]]
<row-list> ::= <row> | <row> "," <row-list>
<row> ::= "[" <number-list> "]"                     % e.g., [1,2]
<number-list> ::= <number> | <number> "," <number-list>  % e.g., 1,2

Meaning of <n> Across Types:

Semantics

Chain

Cochain

Category

Monoid

Simplex

Simplicial

Simplicial Modes

Formation

The simplicial type is declared as a set within the context Ī“ without any premises.

Ī“ ⊢ Ī” : Type

Introduction

A simplicial set of rank n with elements S and constraints R is formed from context Ī“ if simplices, equalities, face maps, and degeneracy maps are properly defined.

Ī“ ⊢ n (S | R) : Simplicial if
Ī“ = s₀₁, …, sā‚™ā‚˜ā‚™ : Simplex, r₁, …, rā‚š ∧
    Sā‚€, S₁, …, Sā‚™ = (s₀₁, …, sā‚€ā‚˜ā‚€), …, (sₙ₁, …, sā‚™ā‚˜ā‚™) ∧
    rā±¼ = tā±¼ = tā±¼',
Ī“ ⊢ rā±¼ : tā±¼ = tā±¼' ∧
    āˆ‚įµ¢ā±¼ < sā‚–ā‚—,
Ī“ ⊢ āˆ‚įµ¢ā±¼ : sā‚–ā‚— → sₖ₋₁,ā‚˜ ∧
    σᵢⱼ < sā‚–ā‚—,
Ī“ ⊢ σᵢⱼ : sā‚–ā‚— → sā‚–ā‚Šā‚,ā‚˜

Elim Face

The face map āˆ‚įµ¢ā±¼ extracts a simplex from s in a simplicial set if the constraint r defines the face relation.

Ī“ ⊢ āˆ‚įµ¢ā±¼ s : Simplex if
Ī“ ⊢ n (S | R) : Simplicial ∧
    r = āˆ‚įµ¢ā±¼ < s ∧
    r ∈ R ∧
    s ∈ S                                  

Elim Composition

The composition s₁ ∘ sā‚‚ yields a simplex c in a simplicial set if the constraint r defines it and s1 and s2 are composable.

Ī“ ⊢ c : Simplex if
Ī“ ⊢ n (S | R) : Simplicial ∧
    r = c = s₁ ∘ sā‚‚ ∧
    r ∈ R ∧ s₁, sā‚‚ ∈ S ∧
Ī“ ⊢ āˆ‚įµ¢įµ¢ā‚‹ā‚ s₁ = āˆ‚įµ¢ā‚€ sā‚‚

Elim Degeneracy

The degeneracy map σᵢⱼ lifts a simplex s to a higher simplex in a simplicial set if the constraint r defines the degeneracy relation.

Ī“ ⊢ σᵢⱼ s : Simplex if
Ī“ ⊢ n (S | R) : Simplicial ∧
    r = σᵢⱼ < s,
    r ∈ R,
    s ∈ S

Face Computation

The face map āˆ‚įµ¢ā±¼ applied to a simplicial set reduces to the simplex s′ specified by the constraint r in R.

āˆ‚įµ¢ā±¼ (n (S | R)) → s' if
    r = āˆ‚įµ¢ā±¼ < s' ∧
    r ∈ R ∧
    s' ∈ S

Composition Computation.

The composition s₁ ∘ sā‚‚ applied to a simplicial set reduces to the simplex c specified by the constraint r in R, given s1 and s2 are composable.

(s₁ ∘ sā‚‚) (n (S | R)) → c if
    r = c = s₁ ∘ sā‚‚ ∧
    r ∈ R ∧
    s₁, sā‚‚ ∈ S ∧
Ī“ ⊢ āˆ‚įµ¢įµ¢ā‚‹ā‚ s₁ = āˆ‚įµ¢ā‚€ sā‚‚

Degeneracy Computation.

The degeneracy map σᵢⱼ applied to a simplicial set reduces to the simplex s′ specified by the constraint r in R.

σᵢⱼ (n (S | R)) → s' if
    r = σᵢⱼ < s' ∧ 
    r ∈ R ∧ 
    s' ∈ S

Face Uniqueness

Two face maps āˆ‚įµ¢ā±¼ s and āˆ‚įµ¢ā±¼ s′ are equal if they are defined by constraints r and r′ across two simplicial sets with matching elements.

Ī“ ⊢ āˆ‚įµ¢ā±¼ s ≔ āˆ‚įµ¢ā±¼ s'  if  
Ī“ ⊢ n (S | R) : Simplicial ∧ 
    n (S' | R') : Simplicial ∧ 
    s ∈ S ∧ s' ∈ S' ∧ 
    r = āˆ‚įµ¢ā±¼ < s ∈ R ∧ 
    r' = āˆ‚įµ¢ā±¼ < s' ∈ R'

Uniqueness of Composition.

Two composed simplices c and c′ are equal if their constraints r and r′ define compositions of matching pairs s₁, sā‚‚ and s₁′, s₂′ across two simplicial sets with composability conditions.

Ī“ ⊢ c ≔ c' if
Ī“ ⊢ n (S | R) : Simplicial ∧
    n (S' | R') : Simplicial ∧ 
    r = c = s₁ ∘ sā‚‚ ∈ R ∧
    r' = c' = s₁' ∘ sā‚‚' ∈ R' ∧
    s₁, sā‚‚ ∈ S ∧ 
    s₁', sā‚‚' ∈ S' ∧ 
Ī“ ⊢ āˆ‚įµ¢įµ¢ā‚‹ā‚ s₁ = āˆ‚įµ¢ā‚€ sā‚‚ ∧ 
Ī“ ⊢ āˆ‚įµ¢įµ¢ā‚‹ā‚ s₁' = āˆ‚įµ¢ā‚€ sā‚‚'

Uniqueness of Degeneracy.

Two degeneracy maps σᵢⱼ s and σᵢⱼ s′ are equal if they are defined by constraints r and r′ across two simplicial sets with matching elements.

Ī“ ⊢ σᵢⱼ s ≔ σᵢⱼ s' if
Ī“ ⊢ n (S | R) : Simplicial ∧
    n (S' | R') : Simplicial ∧
    s ∈ S ∧
    s' ∈ S' ∧
    r = σᵢⱼ < s ∈ R ∧
    r' = σᵢⱼ < s' ∈ R'

Examples

N-Monoid

def nat_monoid : Monoid
 := П (z s : Simplex),
      s ∘ z = s, z ∘ s = s
    ⊢ 2 (z s | s ∘ z = s, z ∘ s = s)

O(5).

Category with Group (Path Category with Z/2Z)

def path_z2_category : Category
 := П (x y : Simplex),
      (f g h : Simplex),
      (z2 : Group(П (e a : Simplex), a² = e ⊢ 1 (a | a² = e))),
      f ∘ g = h
    ⊢ 2 (x y | f g h | f ∘ g = h)

O(8)—5 context + 2 nested group + 1 constraint—linear with nesting.

Triangle Chain

def triangle_chain : Chain
 := П (vā‚€ v₁ vā‚‚ e₀₁ e₀₂ e₁₂ t : Simplex),
      āˆ‚ā‚ā‚€ = e₀₁, āˆ‚ā‚ā‚ = e₀₂, āˆ‚ā‚ā‚‚ = e₁₂, āˆ‚ā‚‚ < e₀₁ e₀₂ e₁₂
    ⊢ 2 (vā‚€ v₁ vā‚‚, e₀₁ e₀₂ e₁₂, t | āˆ‚ā‚ā‚€ āˆ‚ā‚ā‚ āˆ‚ā‚ā‚‚, āˆ‚ā‚‚)

O(11).

Simplicial Circle

def circle : Simplicial
 := П (v e : Simplex),
       āˆ‚ā‚ā‚€ = v, āˆ‚ā‚ā‚ = v, sā‚€ < v
     ⊢ 1 (v, e | āˆ‚ā‚ā‚€ āˆ‚ā‚ā‚, sā‚€)

O(5).

Z/3Z

def z3 : Group
 := П (e a : Simplex),
      a³ = e
    ⊢ 1 (a | a³ = e)

O(4).

Triangle

def triangle : Simplex := П (a b c : Simplex),
         (ab bc ca : Simplex), ac = ab ∘ bc
         ⊢ 2 (a b c | ab bc ca)

O(7).

Singular Cone

def singular_cone : Simplex
 := П (p q r s : Simplex),
      (qrs prs pqs : Simplex), pqr = pqs ∘ qrs
    ⊢ 3 (p q r s | qrs prs pqs pqr)

Context: p, q, r, s: Simplex (vertices), qrs, prs, pqs : Simplex (faces), pqr = pqs ∘ qrs.

Simplex: Dimension 3, 4 faces.

Mƶbius Piece

def Mƶbius : Simplex
 := П (a b c : Simplex),
      (bc ac : Simplex), ab = bc ∘ ac
    ⊢ 2 (a b c | bc ac ab)

Context: a, b, c : Simplex (vertices), bc, ac : Simplex (faces), ab = bc ∘ ac (relation).

Simplex: Dimension 2, 3 faces.

Degenerate Tetrahedron

def degen_tetra : Simplex
 := П (p q r s : Simplex, q = r),
      (qrs prs pqs : Simplex), pqr = pqs ∘ qrs
    ⊢ 3 (p q r s | qrs prs pqs pqr)

Context: p, q, r, s : Simplex, q = r (degeneracy), qrs, prs, pqs : Simplex, pqr = pqs ∘ qrs.

Simplex: Dimension 3, 4 faces—degeneracy implies a collapsed edge.

Non-Triviality: q = r flattens the structure algebraically, testing composition under equality.

Twisted Annulus

def twisted_annulus : Simplex
 := П (a b c d : Simplex),
      (bc ac bd : Simplex), ab = bc ∘ ac, cd = ac ∘ bd
    ⊢ 2 (a b c | bc ac ab), 2 (b c d | bc bd cd)

Context:

Simplices:

Checking:

Degenerate Triangle (Collapsed Edge)

def degen_triangle : Simplex
 := П (a b c : Simplex, b = c),
      (bc ac : Simplex), ab = bc ∘ ac
    ⊢ 2 (a b c | bc ac ab)

Context:

Simplex:

Checking:

Singular Prism (Degenerate Face)

def singular_prism : Simplex
 := П (p q r s t : Simplex),
      (qrs prs pqt : Simplex, qrs = qrs), pqr = pqt ∘ qrs
    ⊢ 3 (p q r s | qrs prs pqt pqr)

Context:

Simplex:

Checking:

S¹ as āˆž-Groupoid

def s1_infty : Simplicial
 := П (v e : Simplex),
      āˆ‚ā‚ā‚€ = v, āˆ‚ā‚ā‚ = v, sā‚€ < v,
      āˆ‚ā‚‚ā‚€ = e ∘ e, s₁₀ < āˆ‚ā‚‚ā‚€
    ⊢ āˆž (v, e, āˆ‚ā‚‚ā‚€ | āˆ‚ā‚ā‚€ āˆ‚ā‚ā‚, sā‚€, āˆ‚ā‚‚ā‚€, s₁₀)

AST:

(* Infinite S¹ āˆž-groupoid *)
let s1_infty = {
  name = "s1_infty";
  typ = Simplicial;
  context = [
    Decl (["v"; "e"], Simplex);  (* Base point and loop *)
    Equality ("āˆ‚ā‚ā‚€", Id "v", Id "āˆ‚ā‚ā‚€");
    Equality ("āˆ‚ā‚ā‚", Id "v", Id "āˆ‚ā‚ā‚");
    Equality ("sā‚€", Id "e", Id "sā‚€");
    Equality ("āˆ‚ā‚‚ā‚€", Comp (Id "e", Id "e"), Id "āˆ‚ā‚‚ā‚€");  (* 2-cell: e ∘ e *)
    Equality ("s₁₀", Id "āˆ‚ā‚‚ā‚€", Id "s₁₀")  (* Degeneracy for 2-cell *)
  ];
  rank = Infinite;  (* Unbounded dimensions *)
  elements = ["v"; "e"; "āˆ‚ā‚‚ā‚€"];  (* Finite truncation: 0-, 1-, 2-cells *)
  constraints = [
    Eq (Id "āˆ‚ā‚ā‚€", Id "v");
    Eq (Id "āˆ‚ā‚ā‚", Id "v");
    Map ("sā‚€", ["v"]);
    Eq (Id "āˆ‚ā‚‚ā‚€", Comp (Id "e", Id "e"));
    Map ("s₁₀", ["āˆ‚ā‚‚ā‚€"])
  ]
}

āˆž-Category with cube fillers

def cube_infty : Category := П (a b c : Simplex),
       (f g h : Simplex), cube2 = g ∘ f, cube2 : Simplex,
       cube3 = cube2 ∘ f, cube3 : Simplex
       ⊢ āˆž (a b c | cube2 cube3)

Matrix Ring Spectrum

def matrix_ring_spectrum : Ring
 := П (a b s p : Simplex),
      a + b = s, a ā‹… b = p,
      a = [[1,2],[3,4]], b = [[0,1],[1,0]], s = [[1,3],[4,4]], p = [[2,1],[4,3]]
    ⊢ 4 (a b s p | a + b = s, a ā‹… b = p, a = [[1,2],[3,4]], b = [[0,1],[1,0]],
                   s = [[1,3],[4,4]], p = [[2,1],[4,3]])

HZ spectrum

def hz_spectrum : Ring
 := П (x y p : Simplex),
      x ā‹… y = p,
      x = 2, y = 3, p = 6
    ⊢ 3 (x y p | x ā‹… y = p, x = 2, y = 3, p = 6)

Poly Ring spectrum

def poly_ring_zx : Ring
 := П (f g s p : Simplex),
      f + g = s, f ā‹… g = p,
      f = x + 1, g = 2 ā‹… x, s = 3 ā‹… x + 1, p = 2 ā‹… x ā‹… x + 2 ā‹… x
    ⊢ 4 (f g s p | f + g = s, f ā‹… g = p, f = x + 1, g = 2 ā‹… x,
                   s = 3 ā‹… x + 1, p = 2 ā‹… x ā‹… x + 2 ā‹… x)

GF(2⁓) Finite Field

def gf16 : Field
 := П (x y s p d : Simplex),
      x + y = s, x ā‹… y = p, x / y = d,
      x = Z(2^4), y = Z(2^4)^2,
      s = Z(2^4) + Z(2^4)^2,
      p = Z(2^4)^3, d = Z(2^4)^14
    ⊢ 5 (x y s p d | x + y = s, x ā‹… y = p, x / y = d,
                     x = Z(2^4), y = Z(2^4)^2,
                     s = Z(2^4) + Z(2^4)^2,
                     p = Z(2^4)^3,
                     d = Z(2^4)^14)

GF(7) Prime Field

def gf7 : Field
 := П (x y s p d : Simplex),
      x + y = s, x ā‹… y = p, x / y = d,
      x = 2, y = 3, s = 5, p = 6, d = 3
    ⊢ 5 (x y s p d | x + y = s, x ā‹… y = p,
         x / y = d, x = 2, y = 3,
         s = 5, p = 6, d = 3)

Bibliography

Conclusion

Dan Kan Simplicity HoTT, hosted at groupoid/dan, is a lightweight, pure type checker built on Cubical Homotopy Type Theory (CCHM), named in tribute to Daniel Kan for his foundational work on simplicial sets. With a unified syntax — П (context) ⊢ n (elements | constraints) — Dan supports a rich type system Simplex, Group, Simplicial, Chain, Category, Monoid, now extended with āˆž-categories featuring cube fillers.